Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer.

نویسندگان

  • Bo Wu
  • Hong M Moulton
  • Patrick L Iversen
  • Jiangang Jiang
  • Juan Li
  • Jianbin Li
  • Christopher F Spurney
  • Arpana Sali
  • Alfredo D Guerron
  • Kanneboyina Nagaraju
  • Timothy Doran
  • Peijuan Lu
  • Xiao Xiao
  • Qi Long Lu
چکیده

Antisense oligonucleotide-mediated exon skipping is able to correct out-of-frame mutations in Duchenne muscular dystrophy and restore truncated yet functional dystrophins. However, its application is limited by low potency and inefficiency in systemic delivery, especially failure to restore dystrophin in heart. Here, we conjugate a phosphorodiamidate morpholino oligomer with a designed cell-penetrating peptide (PPMO) targeting a mutated dystrophin exon. Systemic delivery of the novel PPMO restores dystrophin to almost normal levels in the cardiac and skeletal muscles in dystrophic mdx mouse. This leads to increase in muscle strength and prevents cardiac pump failure induced by dobutamine stress in vivo. Muscle pathology and function continue to improve during the 12-week course of biweekly treatment, with significant reduction in levels of serum creatine kinase. The high degree of potency of the oligomer in targeting all muscles and the lack of detectable toxicity and immune response support the feasibility of testing the novel oligomer in treating Duchenne muscular dystrophy patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptide Nucleic Acid Promotes Systemic Dystrophin Expression and Functional Rescue in Dystrophin-deficient mdx Mice

Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise for Duchenne muscular dystrophy (DMD) patients. However, recent failure with drisapersen, an AO candidate drug in phase 3 trial, highlights the importance of exploring other effective AO chemistries for DMD. Previously, we demonstrated the appreciable biological activity of peptide nucleic acid (PNA) AOs in r...

متن کامل

Diaphragm rescue alone prevents heart dysfunction in dystrophic mice.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrop...

متن کامل

Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.

Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo....

متن کامل

Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs.

Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morphol...

متن کامل

Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers.

AIMS The cardiomyopathy found in Duchenne muscular dystrophy (DMD) is responsible for death due to heart failure in approximately 30% of patients and additionally contributes to many DMD morbidities. Strategies to bypass DMD-causing mutations to allow an increase in body-wide dystrophin have proved promising, but increasing cardiac dystrophin continues to be challenging. The purpose of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 39  شماره 

صفحات  -

تاریخ انتشار 2008